
Universidad de Buenos Aires

Facultad de Ciencias Exactas Y Naturales

Departamento de Computación
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ABSTRACT

Las técnicas de data mining consisten en la extracción de información a partir de una gran

cantidad de datos, mediante el descubrimiento de patrones y regularidades por medio de

algoritmos de aprendizaje automático entre otros. Esto puede aplicarse a la clasificación

de objetos por medio de imágenes.

En la cadena de producción de frutas, el control de calidad es realizado por personas

entrenadas, que examinan los frutos mientras éstos avanzan por una cinta transportadora.

Luego los clasifican en distintas categoŕıas de acuerdo a diversas caracteŕısticas visuales.

En este trabajo presentamos un método para clasificar naranjas por medio de imágenes.

El proceso consiste en capturar las imágenes mediante una cámara digital para luego

extraer caracteŕısticas y entrenar diversos algoritmos de data mining, los cuales deberán

clasificar a la naranja en una de las tres categoŕıas pre-establecidas.

Los algoritmos de data mining utilizados son cinco diferentes árboles de decisión (J48,

Classification and Regression Tree (CART), Best First Tree, Logistic Model Tree (LMT)

y Random Forest), tres redes neuronales (Perceptrón Multicapa con Backpropagation,

Radial Basis Function Network (RBF Network), Sequential Minimal Optimization para

Support Vector Machines (SMO)) y una regla de clasificación (1Rule).

Uno de los principales problemas que tiene la clasificación de naranjas es la detección

del cáliz, debido a que en las imágenes el cáliz puede confundirse con un defecto. Por lo

tanto, previo a la extracción de caracteŕısticas necesitamos detectar y remover el cáliz de la

imagen. Para ello, en la etapa de segmentación utilizamos el espacio de color CIE L*a*b*

y análisis de agrupamiento k-medias para identificar las regiones candidatas que puedan

pertenecer al cáliz o a un defecto. Luego, realizamos la extracción de caracteŕısticas uti-

lizando momentos de Zernike y análisis de componentes principales para obtener diversos

descriptores para cada región. Por último, en la etapa de clasificación empleamos diver-

sos algoritmos de aprendizaje automático (tres redes neuronales y un árbol de decisión)

mediante los cuales clasificamos a la región como cáliz o defecto.

Los resultados obtenidos son alentadores, debido a la buena precisión alcanzada por

los clasificadores, lo que demuestra la factibilidad de construir un sistema de clasificación

de naranjas basado en técnicas de data mining y procesamiento de imágenes, para ser

utilizado en la industria alimenticia.



ABSTRACT

Data mining can be summarized as the discovery of patterns and regularities from large

amounts of data, using machine learning algorithms among others. These methods can be

applied to object recognition and classification using image processing techniques.

In fruits and vegetables production lines, the quality assurance is performed by trained

personnel who inspect the fruits while they travel over a conveyor belt, and classify them

in a number of categories based on visual features.

In this thesis we present an automatic orange grading system, which uses artificial

visual inspection to extract features from images captured using a digital camera. With

these features, we train several data mining algorithms, which should classify the fruits in

one of the pre-established categories.

The data mining algorithms used are five different decision trees (J48, Classification

and Regression Tree (CART), Best First Tree, Logistic Model Tree (LMT) and Random

Forest), three artificial neural networks (Multilayer Perceptron with Backpropagation,

Radial Basis Function Network (RBF Network), Sequential Minimal Optimization for

Support Vector Machines (SMO)) and a classification rule (1Rule).

Prior to feature extraction, we have to detect and remove the stem-end or calyx from

the image, in order not to misclassify the calyx as a defect in the classification step.

To do so, we use the CIE L*a*b* color space and perform K-means clustering in the

segmentation step to identify candidate regions where a calyx or a defect could be found.

Then, we perform feature extraction using Zernike moments and Principal Component

Analysis to retrieve several descriptors of each region. Finally, we use several classification

algorithms (Multilayer Perceptron, Radial Basis Function Network, Sequential Minimal

Optimization for SVM and Logistic Model Tree) for the classification step, in order to

classify the region as calyx or defect.

The obtained results are promising because of the good accuracy obtained by the

classifiers, which shows the feasibility of building an orange grading system based on

image processing and data mining techniques to be used in the food industry.



1. INTRODUCTION

1.1 Motivation

During the last years, there has been an increase in the need to measure the quality of

several products, in order to satisfy customers needs in the industry and services. In

fruit and vegetable production lines, the quality assurance is the only step which is not

done automatically. For oranges, quality assurance is performed by trained personnel who

inspect the fruits while they travel over a conveyor belt, and classify them in a number of

categories based on visual features.

Performing an accurate classification is crucial in order to fulfill the quality require-

ments established by several organizations to allow the commercialization of the fruits for

specific markets. If a good quality orange is misclassified as defective or intermediate, it

will be sold at a lower price, but if a defective orange is misclassified as good, it might

lead to the application of fines for selling defective oranges as good; or if the defect is an

illness, it can lead to discard the whole lot of fruits, causing considerable loss.

In the industry, there are very few automatic classification machines, mainly because

of the need of advanced image processing. This is required to perform fast and complex

analysis given the wide range of variations found on natural products [37].

Visual aspect is very important for fruits. An orange with an excellent peel is sold at

a higher price than another orange with the same internal features but with superficial

defects. This promoted the establishment of quality standards at many organizations For

instance, Zubrzycki & Molina [17] present a table with five categories for oranges, lemons

and tangerines. This can be seen in Table 1.1.

However, the differences in quality categories are diffuse and subjective, therefore two

orange grading experts can classify the same specimen into different categories. It is

possible to reduce this subjectivity by using an automatic classifier.
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Defect type

Categories
Extra Cat. I Cat. II Cat. III Cat. IV

Serious defects 0% 2% 3% 4% 4%

Deep damage 0% 3% 5% 5% 5%

Overripe 0% 1% 3% 9% 9%

Total serious 0% 3% 5% 9% 9%

Deform 0% 1% 10% 20% 100%

Kind of mark

Diffuse Level 1 5% 20% 40% 100% 100%

Diffuse Level 2 0% 5% 20% 50% 100%

Deep Level 1 0% 15% 20% 3% 100%

Deep Level 2 0% 3% 10% 20% 10%

Total marks 5% 25% 40% 100% 100%

TOTAL 5% 25% 40% 100% 100%

Tab. 1.1: Citrus classification categories. Adapted from [17]

1.2 State of the Art

In the scientific community, there is significant interest in the development of artificial

vision based fruit classification systems. Recce et. al [37] introduce an orange classifier

which uses artificial neural networks and Zernike polynomials. Unay and Gosselin [10] show

an apple classifier based on color and texture features, using principal components analysis

and neural networks. Fobes [28] proposes a system to estimate the volume of a fruit from

digital images. Morimoto et al. [56] introduce a system for fruit shape recognition using

the fractal dimension and neural networks.

One of the main complications faced by the authors is the detection of the calyx,

because it can be wrongly classified as a defect [37]. Another difficulty is the speed needed

to perform the classification, because it has to be done in the time imposed by the speed

of the conveyor belt.

Several authors have studied stem-end/calyx detection with success. Unay and Gos-

selin extract several features (invariant moments of Hu, textural features of Haralick, Gray-

Level Co-occurrence Matrices, averages and ranges of coefficients of Daubichies wavelet

decomposition, averages and ranges of intensities of objects) and then compare two clas-

sifiers (K-Nearest Neighbor and Support Vector Machines) [11]. Recce et. al introduce a

stem detection system based on Zernike moments and Neural Networks [37]. Ruiz et. al

present a system which uses color segmentation and Bayesian decision rules to discriminate

the calyx and cut stem [34]. Leeman and Destain propose a pattern matching by corre-

lation approach to detect the calyxes and stem-ends. Xing, Jancsok and Baerdemaeker
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perform Principal Component Analysis (PCA) for stem end/calyx detection of apples,

where they analyze the contour features of the first principal component score images [20].

In this thesis, we present a method to classify oranges using digital still images. The

process consists of the extraction of relevant features to be able to classify the orange into

three categories (good, intermediate and defective). Some of the most relevant features

used are statistical descriptors, histogram analysis, and the fractal dimension (FD), which

can be used to characterize the oranges’ peel smoothness as a quality indicator.

The method developed in this thesis is exclusively focused in the calyx detection and

classification steps, but in order to make this thesis self contained, in chapter 3 we briefly

introduce the system that should be used to capture the images.

The results of this thesis have been presented in [25], [23] and [24].

1.3 Thesis Organization

This thesis is organized in the following way: we start by presenting the fundamentals of

digital image processing and data mining in chapter 2, where we explain in detail all the

machine learning algorithms used in this thesis. In chapter 3, a general description of the

system is made, introducing the image capture step.

Next, the calyx detection subsystem is analyzed in chapter 4, where we explain the

segmentation process, the feature extraction algorithms involved, and the classification of

candidate regions as calyx or defect using data mining algorithms.

In chapter 5 we focus on the quality categories classification subsystem, explaining how

the features used by the data mining algorithms in the classification step are obtained,

and in section 5.2 we present the classification results obtained with the experiments.

Finally, in chapter 6 we present the conclusions and future works.

3



2. PRELIMINARIES

In this chapter we introduce the fundamentals of digital image processing and data mining

in order to give the reader a background on these techniques and make this thesis self

containing. If the reader has knowledge on these concepts, this chapter could be skipped.

2.1 Digital Image Processing

2.1.1 Digital Image Representation

An image can be represented as a two dimensional function f : R
2 → R, f(x, y), being x

and y the spatial coordinates and the value of f at a certain point is the intensity of the

image in that point. A digital image is an image f : N × N → [0, 1, ..., L − 1] where L is

the luminance value [49]. The processing of this kind of images is named ’Digital Image

Processing’.

A digital image is represented in a computer as a two dimensional matrix where each

element is called a ’Picture Element’ or ’Pixel’. The value of each pixel can represent a

gray level, a chromatic value or it can also represent a non-human visual magnitude like

an infrared image [49].

Figure 2.1 (a) shows a 15x15 pixels binary (black and white) image and Figure 2.1 (b)

shows its computer representation, where white is represented with 1 and black with 0.

(a) 15x15 pixels binary image (b) 15x15 pixels binary image

representation

Fig. 2.1: Binary image and its computer representation



Fig. 2.2: Additive model of light: Adding Red and Green forms Yellow, Red and Blue form Ma-

genta, Blue and Green form Cyan and adding Red, Green and Blue form white

Color images can be represented in different ways, according to the color space being

used. This will be explained in the following section.

2.1.2 Color Spaces

Color images are represented as a combination of matrices where each matrix represent a

single color component image.

• Red, Green and Blue (RGB) Color Space: Red, Green and Blue are the colors

basis of light, so it is widely used in image acquisition using photo and video cameras,

and also for displaying images in computer monitors and projectors. An example of

additive colors is shown in Figure 2.2. A RGB image consists of three components:

Red, Green and Blue, so each pixel has three values. This can be seen in Figure 2.3.

Figure 2.4 shows the Red, Green and Blue components of an image of size 144x192

with 8 bits per channel (or component), so each pixel can contain 256 (28) levels for

each component.

• Cyan, Magenta, Yellow, Black (CMY K) Color Space: Cyan, Magenta and

Yellow are the colors basis for pigments, and the secondary colors of light, because

they subtract the color from the reflected light. For example, Cyan is the absence of

Red, Magenta the absence of Green and Yellow the absence of Blue [49]. An example

of subtractive colors is shown in Figure 2.5.

The formula to convert from RGB to CMY is shown in Equation (2.1).

Theoretically, equal amounts of pigments of cyan, magenta and yellow should pro-

duce black, but in practice it produces a kind of gray, so black (K) is also added [49].

5



Fig. 2.3: RGB image made of three layers.

(a) Component R (b) Component G (c) Component B (d) RGB with 1 ṕıxel

Fig. 2.4: Red, Green and Blue (RGB) components of an image.
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(2.1)

• Hue, Saturation, Value (HSV ) Color Space: The HSV color space consists of

three components:

– Hue: Can be considered similar to tint, and it is expressed as an angle of the

color hexagon considering Red as 0◦.

– Saturation: Represents the purity of the color, and is expressed as the distance

from the center of the hexagon to the point of interest.

– Value: Is the amount of light of a certain color. A value of 0 is black, and a

value of 1 in the center of the hexagon is white.

The conversion from RGB to HSV is done by mapping the RGB values which are

in cartesian coordinates, to HSV values which are in cylindrical coordinates [49].

An example of the HSV Color Space is shown in Figure 2.6.

• CIE XYZ colorspace: The CIE XYZ color space, which stands for ’Commission

Internationale de l´Eclairage’ (International Commission on Illumination) XYZ, con-

sists of a linear transformation of the RGB color space using Equation (2.2) [33].

6



Fig. 2.5: Subtracting Colors of light: Subtracting magenta and cyan from white forms blue, sub-

tracting magenta and yellow from white forms red, subtracting cyan and yellow from

white forms green, and subtracting cyan, magenta and yellow forms black
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(2.2)

• CIE L*a*b* colorspace: The CIE L*a*b* color space was designed to be percep-

tually uniform, so it is considered as one of the best color spaces for matching the

human perception distance of colors [14].

The color space consists of three layers:

– Luminance or brightness layer L∗: Can have the range from 0 to 100, where 0

is black and 100 white. It does not contain color information.

– Red-Green chromatic layer a∗
– Blue-Yellow chromatic layer b∗ [26]

An example of CIE L*a*b* components is shown in Figure 2.7, where 2.7 (a) shows

the luminance component of the image, 2.7 b) and 2.7 c) show the a and b components

and Figure 2.7 d) shows both the a and b components which include all the color

information, discarding the luminance information.

CIE L*a*b* is based on the XY Z color space, so conversion from RGB to CIE

L*a*b* is performed with the following equations: First, convert from RGB to

XY Z using Equation (2.2).

Then, convert from XY Z to L*a*b* using Equation (2.3).
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Fig. 2.6: HSV Color Space.

a∗ = 500 ∗ [f(X/Xn) − f(Y/Yn)]

b∗ = 200 ∗ [f(Y/Yn) − f(Z/Zn)]

L∗ =







116 ∗ (Y/Yn)1/3 − 16 when (Y/Yn) > 0.008856,

903.3 ∗ (Y/Yn) otherwise.

(2.3)

where Xn, Yn and Zn are the values of reference for white (e.g.: Xn = 1, Yn = 0.9872

and Zn = 1.18225) [33].

(a) Luminance (b) Component a∗ (c) Component b∗ (d) Components a∗ & b∗

Fig. 2.7: Luminance, a∗ and b∗ (CIE L*a*b*) components of an image
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2.1.3 Morphological operators

Morphological operators are primarily used with binary images to recover shapes of the

image, which may be needed to describe the shape of the objects of interest [49].

In this section we explain the basic morphological operators used in this thesis.

• Dilation: Dilation consists in growing the objects by expanding their boundaries

in a controlled way using a structuring element, which is the shape used to perform

the operation [49]. The mathematical equation is the following:

G ⊕ M = {p : Mp ∩ G 6= ⊘}. (2.4)

where M is the set of non-zero mask pixels known as the structuring element, G

is the original image consisting of the set of all non zero pixels of the matrix, p is

the reference pixel (generally the center of the structuring element) and Mp is the

structuring element shifted to the reference point p [21].

The equation means that dilation of G using M results in all structuring elements

which overlap with G at least in one point [49].

An example of dilation operation can be seen in Figure 2.8 (c).

• Erosion: Erosion is the opposite to dilation, as the object is ’shrunk’ or ’thinned’

instead of grown. It also uses a structuring element, and the equation is denoted by:

G ⊖ M = {p : Mp ∩ Gc 6= ⊘ }. (2.5)

which means that the resulting object will have a foreground value (e.g.: 1) in

the center of the structuring element (p) only when it does not overlap with the

background [49].

An example of erosion is shown in Figure 2.8 (d).

• Opening: Morphological opening of G by M consists of performing erosion of G by

M and that result dilated by M . In mathematical notation, opening is denoted by:

G ◦ M = (G ⊖ M) ⊕ M (2.6)

and the result of morphological opening is an object which has been removed all the

regions that cannot contain the structuring element M . Opening is commonly used

to remove background noise, smooth object contours, break thin connections and

remove thin protrusions [49].

An example of the application of morphological opening operation is shown in Fig-

ure 2.8 (e), where it can be seen that the three regions in white are kept.

• Closing: Closing consists of dilation followed by erosion and the mathematical

equation is the following:

G • M = (G ⊕ M) ⊖ M (2.7)
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(a) Original image with background

removed

(b) Binary representation of the im-

age

(c) Morphological dilation (d) Morphological erosion

(e) Morphological closing (f) Morphological opening

Fig. 2.8: Morphological operators
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and similar to opening, closing smooths contours. However, it joins narrow breaks,

fills long thin gulfs and fills holes smaller than the structuring element M [49].

An example of applying the closing operation is shown in Figure 2.8 (f), where it

can be seen that only the biggest of the three regions is kept, as closing fills holes

smaller than the structuring element, in which in this case has a size of 8 pixels and

a circular shape.

Closing and opening can also be combined and are commonly used to remove noise.
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2.2 Data Mining and Knowledge Discovery in Databases

Data mining can be defined as the discovery of patterns and regularities from large amounts

of data, using machine learning algorithms among others. Another definition of Data

mining given by [18] is:

’Data mining is the extraction of implicit, previously unknown, and potentially

useful information from data.’

Data mining involves learning in a practical, not theoretical, way, where existing data takes

the form of examples, and the output of the process is the prediction of new examples [18].

Data mining is also one step in the Knowledge Discovery in Databases (KDD) process.

The steps involved in the KDD process are the following [16]:

1. Data Cleaning: Remove inconsistencies and noise.

2. Data Integration: Consolidate in a single data source data spread over different

databases.

3. Data Selection: Irrelevant data for the task is discarded.

4. Data Transformation: Data are transformed for mining like performing aggrega-

tions or summarizations.

5. Data Mining: the process of discovering patterns and regularities from data, using

machine learning algorithms among others.

6. Pattern Evaluation: the data mining step may generate several patterns or mod-

els, which should be evaluated in order to keep the most interesting ones. A pattern is

considered interesting if it is valid on new data, it is potentially useful and novel [16].

Jan & Kamber [16] also mention that a pattern is interesting if it is easily under-

stood by humans, something that for us is desirable, but depending on the task

involved, it may not be so necessary and several machine learning algorithms like

neural networks, which are very difficult to interpret by humans, are widely used.

7. Knowledge Representation: The representation of the discovered knowledge to

the user, where information visualization techniques are applied.

Data mining is commonly used as a predictive tool, or as a descriptive tool used to

describe the properties of the data [16]. The main functionalities of data mining are the

following [16]:

• Characterization and description: Data characterization consists in describ-

ing the general features of the elements of a class, like for example describing the
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characteristics of oranges that belong to CAT I. Data discrimination resides in de-

scribing classes by comparing a class against other different classes and computing

the differences.

• Association analysis: Resides in finding attribute-value relations that occur to-

gether. It is mainly used in market basket analysis and transaction data analysis.

Association rules are used for this purpose. For example, an association rules analy-

sis in a supermarket may find that sausages and hot dog bread are bought together

with a confidence of 90% (the probability of buying both items together) and a

support of 30% (30% of all the transactions contains both).

• Classification and prediction: Classification consists in finding a model (using

training data) that describes the data and when a new example with an unknown

class is input, its class is predicted. Classification is explained in section 2.2.1.

• Cluster analysis: Cluster analysis consists in grouping similar elements in a cluster.

It uses unsupervised learning because the nature of the class of the elements is not

known in advance.

• Outlier analysis: Outliers are data elements that differ considerably from the

rest of the elements in the dataset. In most cases outliers are a result of noisy or

incorrect data, or it might be a valid value which, depending on the task, it might

be worthwhile to analyze. For example, outliers are commonly used when detecting

frauds.

• Evolution analysis: can be applied to all the previous items when dealing with

objects with time variant behavior, such as stock market trends, where time-series

analysis is commonly used.

2.2.1 Classification using machine learning algorithms

In order to associate the features of the image with the corresponding class (good, in-

termediate or defective), we use several data mining Algorithms. For this purpose, we

experiment with most of the algorithms available in the Waikato Environment for Knowl-

edge Analysis (WEKA) software which are suitable for the kind of problem presented in

this thesis, and choose the ones with the highest accuracy.

The chosen algorithms are: five different decision trees (J48, Classification and Re-

gression Tree (CART), Best First Tree, Logistic Model Tree (LMT) and Random Forest),

three artificial neural networks (Multilayer Perceptron with Backpropagation, Radial Basis

Function Network (RBF Network), Sequential Minimal Optimization for Support Vector

Machines (SMO)) and a decision rule (1Rule).

Before giving the definition of classification, we have to define some concepts like ’class’

and ’hypothesis’ in order to fully understand the following paragraphs.
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There exist three definitions for class:

1. Classes as labels for different populations: in this case, members of each population

are assigned to different classes, and membership to that group is not in question (e.g.

dogs and cats). The allocation to a certain class, which is done by the supervisor, is

independent of the attributes [41].

2. Classes are the result of a prediction problem: For example, to determine if tomorrow

will rain (class = 1) or not (class = 0). This class is predicted based on knowledge

of the attributes [41].

3. The class is a function of the attributes: For example, to determine if an item is

faulty, there exists a rule which already classified items as faulty if certain attributes

are out of a certain limit [41]. The goal is to create a rule which resembles the

original one.

In our problem, we consider the class as a function of the attributes (definition N◦ 3)

because there exists a rule used by the people who manually classify the fruit, and this

rule is the one that has to be mimicked.

According to [41], classification can be related to supervised and unsupervised learning.

In unsupervised learning, given a set of observations, the algorithm has to group the

instances into classes or clusters based on similarity criteria [16]. On the other hand, in

supervised learning we already know the class c of each observation in the dataset D of

size m. The aim is to find a hypothesis or rule, h, that satisfies c for the members of D

and will be a good guess for c when we have to classify a new observation [44], [41].

Another important aspect in machine learning is concept learning. In machine learning,

the concept is ’the thing to be learned ’ [18]. According to [36], Concept Learning means

to infer a boolean-valued function from training examples of its input and output, so it

can be seen as a searching problem through a predefined space of potential hypothesis to

determine the hypothesis which best fit the training examples.

Figure 2.9 (a) shows an instance space example which consists of points in the x,y

plane. In Figure 2.9 (b), a hypotheses consisting of lines is able to separate the classes but

one instance is misclassified. Figure 2.9 (c) shows an hypothesis consisting of a parabola,

which can perfectly classify the instances without error.

Overfitting: One important aspect that has to be considered when building ma-

chine learning algorithm is overfitting, which is a very common pathology of induction

algorithms [8, 41].

Overfitting occurs when inferring more structure from the training set than is justified

by the population from which it is drawn [41]. These added components do not improve

accuracy when tested with new data samples [8].
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(a) Instance space (b) Class separability using hy-

potheses consisting of lines

(c) Class separability using hy-

potheses consisting of parabolas

Fig. 2.9: Class separability problem

An example of overfitting is shown in Figure 2.10, where Figure 2.10 (a) shows the

training instance space with the overfitting hypothesis drawn in black, that ’fits’ the

training data, but when tested with new data, the error rate increases (Figure 2.10 (b))

(a) Overfitting hypothesis (b) Overfitting error curve

Fig. 2.10: Overfitting example

Jensen and Cohen [8] present several reasons for what overfitting is considered harmful:

1. Models with overfitting are incorrect since they inform a relationship with some

variables when that relationship does not exist.

2. These models are more complex and thus require more space to store and more

computational resources to process.

3. Irrelevant attributes require the collection of unnecessary data.

4. Models with overfitting are more difficult to understand.

5. The accuracy obtained with new test data is occasionally lower than the one obtained

with training data.
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2.2.2 K-Means cluster analysis

Cluster analysis is the process of grouping similar objects in the same class [16]. The

similarity of two objects is determined by measuring the distance between them, which

can be calculated in different ways, like Euclidean distance, normalized Euclidean distance,

Mahalanobis distance, etc. [12].

The Euclidean distance ers between two points xr and xs is denoted by:

ers =
√

(xr − xs)′(xr − xs) (2.8)

And the Mahalanobis distance mrs between xr and xs is computed with the following

equation:

mrs =
√

(xr − xs)′Σ−1(xr − xs) (2.9)

being Σ an estimated variance-covariance matrix [12].

This thesis uses Euclidean distance. Cluster analysis belongs to the unsupervised

learning group of algorithms, because the class of each individual is not known.

The clustering method used in this thesis is k-means. This algorithm requires to be

indicated the number of clusters (k) to build, and performs an iterative process producing

k groups of elements whose inter-cluster distance is minimum. The center of each cluster

is called the ’center of mass’ and is the mean value of the elements of the cluster it belongs

to [16].

The k-means algorithm can be described in these steps:

1. Randomly select k elements which will be used as the initial centers.

2. Assign each of the remaining elements to the cluster which similarity (distance) to

the center is minimum.

3. Compute the new mean (center) of each cluster.

4. Repeat steps b) and c) until a stop criteria is met (i.e.: mean square error).

An example of k-Means clustering can be seen in Figure 2.11.

2.2.3 Decision Trees

Jan & Kamber [16] define a decision tree as a tree structure like a flow diagram, in which

each node indicates a test on an attribute, each branch represents the result of that test

and the leaf nodes represent classes.

Mitchell [36] argues that a decision tree is a method that is used to perform approxi-

mations when the objective functions are discrete. An advantage of the decision trees is
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Fig. 2.11: K-Means clustering example: with each iteration, the center of each cluster is moved to

the mean position of the group.

that they can represent the knowledge like IF-THEN rules, which are easy to interpret by

humans.

As was previously mentioned, induction decision trees tend to suffer from overfitting,

and one way to overcome this problem is by using pruning techniques [16].

Pruning methods use statistical measures to remove unnecessary branches in order to

make the classification faster and improve the ability of classifying new data [16].

There exist two approaches to pruning:

1. Pre-pruning: Pruning occurs while the tree is being built by stopping the splitting

of a node, and converting that node to a leaf [16]. A statistical measure and a thresh-

old are used to determine when to stop splitting a node. If that threshold is high, it

might build oversimplified trees, while low thresholds may result in overfitting [16].

2. Post-pruning: In this case, pruning takes place after the tree is fully built, by

removing its branches according to a pruning algorithm which calculates the expected

error rate of the tree if that branch is removed [16].

Next, we introduce the decision trees used in this research:

• Iterative Dichotomiser 3 (ID3): The ID3 algorithm, which was developed by

Quinlan in 1986, is a supervised learning system which builds decision trees from a

set of examples. Each example (instance) has a set of attributes and a class. The

domain of the attributes and the class must be discrete. Furthermore, classes must

be disjoint [36].

To generate an initial decision tree from a training set, this algorithm uses the

’divide and conquer’ strategy, because in each step this method performs a partition
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of the data of the node according to a test performed over the most discriminative

attribute [38].

The criteria used by ID3 to split the nodes is the Entropy. Entropy can be seen

as the amount of information existing in the result of an experiment [44]. Thus,

the ID3 algorithm chooses, for each decision node, the attribute with the high-

est discriminating capacity over the examples analyzed, which is the attribute that

generates disjoint sets where the internal homogeneity is maximized (the variability

minimized) with respect to the values of the class [44].

• C4.5 and J48 decision Trees: C4.5 was presented by Quinlan in 1993 as an

extension of ID3 [38]. The splitting criteria used by this algorithm is the gain

ratio. It also allows the possibility of performing a pessimistic post pruning of the

resulting tree (substituting a subtree by a leave, or by one of its branches) [6]. The

construction strategy is similar to ID3.

The gain ratio criterion consists in building decision trees that use keys to make

branches. It has been observed that this criterion tends to build unbalanced trees,

a characteristic which inherits from the splitting rule that it derives (information

gain). Both heuristics are based on an entropy measure which favors partitions of

the training set unequal in size when one of them has all the instances belonging

to the same class, despite only few instances of the training set belong to that

partition [6].

The J48 algorithm is a new version of Quinlan’s C4.5 algorithm which is used in the

data mining software WEKA. An example of a J48 tree is shown in Figure 2.12.

Fig. 2.12: J48 Decision tree for the Iris dataset

• Classification And Regression Trees (CART): Classification And Regression

Trees is a method created by Breiman [31] that produces decision trees from cate-

gorical or continuous variables. If the variables are continuous, it makes a regression

tree, and if they are categorical, it makes a classification tree. The splitting crite-

ria used for classification are the Gini index, Chi-squared and G-squared; while the
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splitting criteria used for regression is a least squared deviation criterion [31]. The

trees obtained using this method are binary [6].

This algorithm also allows to perform a cost-complexity pruning with cross-

validation [6].

• Best First Tree: Unlike traditional decision trees (i.e., C4.5, CART) which expand

in depth, Best First trees expand selecting the node which maximizes the impurity

reduction among all the available nodes to split. The impurity measure used by this

algorithm is the Gini index and information gain [51].

• Logistic Model Tree (LMT): is a decision tree with the peculiarity that each

leave is a logistic regression model [42]. While logistic regression only captures

lineal patterns, decision trees generate non linear models. One of the disadvantages

of this method is the increased computational complexity [42]. An example of a

Logistic Model Tree which was generated in the calyx detection process is shown in

Figure 2.13, where it can be seen that the leaves of the tree are logistic regressions.

Fig. 2.13: Logistic Model Tree example for calyx detection

• Random Forest: generates a series of decision trees, where each tree is built using a

vector generated randomly for each tree, but using the same distribution for all trees.

After building a considerable amount of trees, each one votes for the most popular

class, and the final model classifies with the class voted by the majority [30]. One

interesting aspect of this classifier is that, given the law of large numbers, overfitting

is not produced [30].
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2.2.4 Classification Rules

• One Rule (1R): The One Rule (1R) algorithm makes a classification rule applying

only a single attribute, producing a result similar to a single level decision tree [50].

This method makes very simple models and has been proved that with several data

sets, it shows results as good as the ones achieved with more complex methods like

C4.5 decision trees [50].

2.2.5 Artificial Neural Networks (ANN)

A neural network can be seen as a massively parallel distributed processor, made of

simple processing units, which are capable of storing experimental knowledge and

have it ready to be used later [52].

It resembles the human brain in which the knowledge is obtained from the environ-

ment through a learning process, and the neural interconnection strengths, known

as synaptic weights, are used to store the acquired knowledge [52].

Biological brains are composed by neurons, which are cells that can process informa-

tion. An example of a biological neuron is shown in figure 2.14 (a), where it can be

seen that the structure of the cell consists of the cell body, the nucleus and a series

of connectors named dendrites which are responsible for receiving the impulse from

predecessor neurons. The axon transmits the impulse to the axon terminal branches

where the synapses takes place transmitting the neuron’s output to other neuron’s

dendrites through a chemical process [52].

The artificial counterpart, which diagram is shown in Figure 2.14 (b), has a series of

input signals (equivalent to dendrites), synaptic weights (equivalent to the synapses),

an activation function (equivalent to the cell body) and the output of the neuron [19].

The mathematical formula of an artificial neuron is denoted by:

yk = ϕ(

n
∑

j=1

wkjxj + bk) (2.10)

where wk1..wk1n are the synaptic weights, x1..xn are the input signals, bk is the bias,

ϕ(.) is the activation function and yk is the output signal. The bias bk is used to

move the threshold of the activation function [52].

The activation function ϕ(.) : R → R has the effect of limiting the amplitude of the

output of the neuron. Examples of activation functions are shown in Figure 2.15.

Artificial Neural Networks are useful in pattern recognition applications, such as

visual inspection systems, where the human brain outperforms computer systems.

For example, [36] mentions that although human brains switching speed is about

10−3 seconds while computer’s switching speed is in the order of 10−10 seconds,

it takes only 10−1 seconds for a human to visually recognize his mother. This
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(a) Biological neuron structure

(b) Artificial neuron diagram

Fig. 2.14: Biological and Artificial neurons

behaviour is thought to be achieved by the distributed representation and highly

parallel processing of the human brain, and this is the motivation of artificial neural

networks architecture [36].

However, there exist several differences between Artificial Neural Networks and bi-

ological brains, like the hormones flow that is not modeled in ANNs, or the fact

that ANN output a single constant value while biological neurons output a series of

complex time series of spikes [36].

• Multilayer Perceptron Neural Network with Backpropagation (MLP):

The ’Multilayer Perceptron’ neural network has an input layer made of input nodes

or ’sensory units’, one or many hidden layers and an output layer. During the train-

ing step, the input signal spreads forward from the input layer to the output layer,

producing a result. This result is compared to the desired value and errors are calcu-

lated in the opposite direction while the synaptic weights are adjusted. Due to this

error propagation process from the output layer to the input layer, this algorithm is

known as ’Backpropagation’
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(a) Threshold activation function (b) Piecewise linear activation function

(c) Sigmoid activation function

Fig. 2.15: Activation functions

• Radial Basis Function Network (RBF Network): Unlike the multilayer per-

ceptron with backpropagation algorithm which uses a recursive approximation tech-

nique known as stochastic approximation, the RBF network can be seen as a curve

fitting problem in a high dimension space, where it has to find the best surface to

fit the training data [52]. The network has three layers. The first layer is the input

from the outside, the second is a hidden layer that makes a non linear transforma-

tion from the input space to the high dimension hidden space. The third layer is the

output layer and shows the response of the neural network to the input data [52].

• Sequential Minimal Optimization for Support Vector Machines (SMO):

Support Vector Machines are linear classifiers that learn in a batch mode basis. The

learned classifier consists of an hyperplane, and the classification is performed by

computing the sign of the dot product of the data point with the classifier [53].

During the training of a support vector machine, it is required to find the solution

to a large quadratic programming (QP ) problem. The SMO algorithm divides this

problem into many smaller QP problems, and they are solved analytically requiring

fewer computational cost [47].

2.2.6 Attribute selection methods

Despite most data mining algorithms are capable of getting rid of non discriminant

attributes, in many cases better results are obtained if the dataset is previously

processed with attribute subset selection algorithms. Furthermore, algorithms often

get their speed reduced by irrelevant or redundant data, which can be discarded

in an early stage by applying attribute selection methods before training the main

machine learning algorithm [40].
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In the following paragraphs, we briefly explain each of the attribute selection methods

used in this thesis.

– Correlation based feature subset selection (CFSSubset): This method

consists in the evaluation of the worth of a subset of attributes taking into con-

sideration the individual predictive power of each attribute and the degree of

redundancy between them [40]. By removing irrelevant attributes, the hypoth-

esis search space is reduced, and in some algorithms, the required storage gets

also reduced. Hall and Smith describe the hypothesis in which the heuristic

is based as: ’Good feature subsets contains features highly correlated with the

class, yet uncorrelated with each other’ [40].

– Information Gain attribute evaluation: This method uses information

theory to measure the information gain of each attribute in order to determine

the discriminant level of each attribute with respect to the class. [18].

– Chi Squared Attribute Evaluator for features subset selection: This

method uses the Chi Squared statistic to evaluate the importance of each at-

tribute with respect to the class [18].

2.2.7 Classifier performance evaluation

In classification problems with only two classes, each instance I of the data set is evaluated

an mapped to one of the classes: p (positive) or n (negative) [55]. The result of the

classification can be either correct or wrong, so there are four possibilities:

1. TP : A true positive is when a positive instance is correctly classified as positive

2. TN : A true negative is when a negative instance is correctly classified as negative

3. FP : A false positive is when a negative instance is wrongly classified as positive

4. FN : A false negative is when a positive instance is wrongly classified as negative

The combination of these values are presented in a matrix form, known as the Con-

fusion Matrix, like the one shown in Table 2.1

`
`

`
`

`
`

`
`

`
`

`
`

`
`

`
`̀

True class

Predicted class
Positive Negative

Positive TP FN

Negative FP TN

Tab. 2.1: Confusion matrix example

Classifier performance can be evaluated by different metrics:
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• Accuracy: TP+TN
TP+TN+FP+FN

• Precision: TP
TP+FP

• False positive rate (hit rate): FP
FP+TN

• True positive rate=Recall: TP
FN+TP

• F-measure: 2
1/precision+1/recall

• Error rate 1 − accuracy

As predictive accuracy has been widely used as the main evaluation criterion [32], we

use this metric to compare classifier performance.

However, there exist better ways to measure the performance of a classifier. The area

under the ROC (receiver operating characteristics) curve (AUC) is considered by many

authors a much better metric than accuracy for evaluating learning algorithms [32].

One of the reasons why classification accuracy is not always suitable resides in the fact

that accuracy assumes equal misclassification costs, and most of the real time problems

fail in this assumption [15]. Furthermore, accuracy maximization assumes that class priors

are known for the target environment [15].

The AUC metric not only overcomes these drawbacks, it also has increased sensitivity

in ANOVA tests and is independent to the decision threshold [32]. ROC curves have also

the advantage that describe the predictive behavior of the classifier independent of class

distribution or error costs [15].

We use the AUC metric to compare classifiers performance when predicting two class

problems (calyx detection and orange quality classification in two classes).

An example of a ROC curve is shown in Figure 2.16, where it can be seen that a ROC

plot has two axis: The true positive rate TP is drawn in the Y axis, and the false positive

rate FP is drawn in the X axis. Note that a confusion matrix corresponds to one point

in the ROC curve [55].
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Fig. 2.16: Receiver Operating Characteristics (ROC) curve example for calyx detection

2.3 Conclusions

Data mining and Digital image processing are both useful tools that can be used together

to perform several tasks like automated visual inspection.

Digital image processing is the set of methods used to process images in the digital

domain, like color space conversions, shape and texture analysis, image segmentation, etc.

In this section we explained how a digital image is represented in a computer, which are

the different ways to represent and process color images, and we also explained several

morphological operations performed over binary images. In this thesis we use image pro-

cessing techniques to compute features from digital images which are then used by the

data mining algorithms to perform the classification.

We also introduced Machine learning and Data mining concepts, as well as a brief

description of all the steps in the Knowledge discovery in databases process. We focused

on classification algorithms like decision trees and neural networks since these group of

algorithms are the ones used in the classification step. We also analyzed the different met-

rics used for analyzing classifiers performance, choosing the accuracy and the area under

the ROC curve (AUC) as the most suitable indicators to compare classifiers performance

in this thesis.
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3. SYSTEM OVERVIEW

The whole orange quality grading system consists of four subsystems. The first one cap-

tures the orange picture, the second one detects and removes the calyx area, the third

one performs the classification into different quality categories, and the last one places the

fruit already classified in the desired container.

This thesis focuses on the calyx detection and classification subsystems, which are

explained in detail in chapters 4 and 5.

The operation of the system is described as follows: Oranges move in the conveyor

belt and enter one by one in the inspection chamber, where a camera with a set of mirrors

capture the images from different angles, except the bottom view which is blocked by the

conveyor belt.

Then, the calyx detection system detects defects and the calyx. In order to avoid

confusions, the calyx is removed from the image. This step is very difficult because the

calyx can be confused with a defect. Finally, the resulting images are processed and

oranges are classified.

A diagram of this mechanism is shown in Figure 3.1

Fig. 3.1: Diagram of the system where oranges images are captured, analyzed and classified into

three categories



3.1 Image capture

The image capture system consists of a conveyor belt and an inspection chamber where

images are captured by a digital camera. The main difficulty of capturing the image is to

be able to capture the picture from all angles, without loosing any section of the orange’s

skin.

There exist many alternatives for solving the problem of not being able to capture the

bottom view.

One solution to solve this inconvenient is the one proposed by Recce et al. [37]. They

suggest that the fruit travel over a conveyor belt at a known constant speed, which throws

the fruit in the air to perform the capture from all possible angles. This method is

illustrated in Figure 3.2 (a).

(a) The fruit is thrown in the air while a camera captures

the images from all possible angles

(b)

Peel-

ing

(c) Mirrors

Fig. 3.2: Different approaches of capturing images from different angles.

The disadvantage of this solution is the increased complexity to synchronize the shoot-

ing time to capture the image, with the position of the orange in the air.

Another solution is the one proposed by D’Amato et. al where they ’virtually peel’

an apple by using a video camera which captures between 3 and 5 images of the same

fruit while it is being rotated by the cilindres of the conveyor belt [45]. By doing this,

each image contains a picture of the fruit from different angles. Finally, all images are

put together (removing redundant data) and that image is the one used for processing.
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A sample image is shown in Figure 3.2 (b). A similar approach is employed by [46] but

using more images of the same fruit to perform a cylindrical projection approximation.

A third approach employed in [28] consists in using several mirrors to capture images

from different angles, as if multiple cameras were used. One of the disadvantages we find

in this approach is that, depending on where the defect is located, it may appear reflected

in more than one mirror, increasing the chances of downgrading that specimen.

In our experiment, we capture the images manually using a digital camera and using

three mirrors to obtain images from different angles.

3.2 Classified oranges placement

Once a fruit is classified, the system has to take an action according to the obtained results.

The machine consists of a series of gates placed at the end of the conveyor belt to divert

the fruit according to the classified quality level, and deposit it in the desired container.

3.3 Conclusions

Along this chapter we showed an overview of the orange grading system, and we explained

the image capture and classified oranges placement subsystems, which are the subsystems

that are not part of the main topic of this thesis. We have discussed the inconvenients faced

when acquiring the image and the advantages and disadvantages of the solutions proposed

by different authors found in the literature. After analyzing the different approaches

for capturing the images, we chose the mirror approach because of the efficiency of its

implementation.
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4. CALYX DETECTION

The calyx or stem-end of an orange fruit is the section where the stem attaches the fruit.

It has a circular and symmetrical shape, and it often presents radial lines that radiate

from the calyx area.

As part of an automatic fruit grading system, the detection of the stem-end/calyx is

a major task required in order not to misclassify calyxes as defects. An accurate calyx

detection will therefore improve the overall accuracy of the fruit grading system.

For the purpose of this work, we consider stem-ends and calyxes as synonyms.

The calyx detection sub-system is further divided into the following steps:

• Pre-processing

• Segmentation

• Feature extraction

• Classification

A diagram of this process is shown in Figure 4.1.

The outcome of the calyx detection system is shown in Figure 4.2.

4.1 Pre-processing

Pre-processing consists in improving image quality as noise reduction or contrast and

brightness enhancement [9]. The goal of the pre-processing step is to improve the precision

and speed of feature extraction algorithms. An example of pre-processing can be seen in

Figure 4.3 where the original image is sharpened, its contrast and brightness are enhanced

and its size is reduced.

4.2 Segmentation

Segmentation consists of splitting up the image in regions in order to extract the objects

of interest [9, 49]. In the pre-processing step we improve the contrast of the image, and

in the segmentation step we remove the background and extract candidate regions where

it is likely to find a calyx/stem-end.



Fig. 4.1: Image processing steps for calyx/defect classification: The oranges images are captured,

segmented into subimages of calyx or defect candidates, features are extracted, and the

image is classified as calyx or defect.

Fig. 4.2: Example of the calyx detection system where an image is analyzed, its calyx is detected

and removed, and the orange is classified.

Fig. 4.3: Pre-processing example: The original image is sharpened, its contrast and brightness are

enhanced and its size is reduced
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Background removal: Being Io and Ib the regions for the orange (foreground) and

background, we extract the region Io from the background by first improving the contrast

of the image I and extracting the blue component from the RGB color space.

The choice of the blue component is because it is the component that most discrimi-

nates the background of the image, due to the fact that for the orange color (made of red

and some green), the value of the blue component is zero. This can be seen in Figure 4.4.

(a) Component R (b) Component G (c) Component B (d) RGB with 1 pixel

Fig. 4.4: Red, Green and Blue (RGB) components of an image.

The gray-level image obtained is then converted to black and white followed by mor-

phological operations (erosion and dilation) for noise reduction [49]. After obtaining a

binary image, a contour tracking algorithm is used to detect the border of the orange in

the original color image to extract the background [49].

This process is done for every image captured.

Mirror segmentation: When using mirrors in the capture step, it is necessary to

identify the different sections of the image where an orange is found. The process is similar

to the background removal: first we improve the contrast of the image and extract the blue

component. Next, the image is binarized, morphological operators are applied following

by a contour tracking algorithm. An example of the original image with the contours of

the orange highlighted is shown in Figure 4.5.

Fig. 4.5: Mirror segmentation
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Calyx candidate regions extraction:

• CIE L*a*b* Color space conversion: The first step is to convert the image

with the background removed to the CIE L*a*b* color space. As it was previously

explained in section 2.1.2, the CIE L*a*b* color space is considered as one of the

best color spaces for matching the human perception distance of colors [14]. This

is because the difference between two colors can be related to the perceptual dis-

tance [14] and thus it is a useful color space to perform cluster analysis. The color

space consists of three layers. The Luminance or brightness layer L∗, the Red-Green

chromatic layer a∗ and the Blue-Yellow chromatic layer b∗ [26].

Once the color space conversion is done, we discard the L∗ component (because it

does not contain color information), and perform a non supervised cluster analysis

to detect different regions.

• K-Means cluster analysis: Cluster analysis is the process of grouping similar

objects into the same class [16]. The similarity of two objects is determined by

measuring the distance between them, which can be calculated in different ways, like

Euclidean distance, normalized Euclidean distance, Mahalanobis distance, etc. [12].

In this thesis we use k-means clustering with Euclidean distance and the number of

clusters chosen is k=2, aiming to find two regions: one for the healthy skin and other

for the calyx or defect. The distinction between calyxes and defects is performed in

a further step.

The result of the k-means process is a binary image with two regions: The region of

healthy skin and the region of the calyx or defect. However, as the image obtained can be

noisy, morphological operators are applied. A scheme of this process is shown in Figure 4.6.

It is performed for every image captured obtaining a total of nc calyx candidate images.

As the aim of this process is to identify the region where a calyx could be found, and

we know the average diameter of the calyx in an image, we discard the candidate regions

which have a diameter smaller than the average (about 5 pixels in 192x144 pixel images).

Fig. 4.6: K-Means clustering after performing CIE L*a*b* colorspace conversion
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4.3 Feature extraction

Once the image is segmented, it is necessary to obtain several features in order to be able

to perform the classification.

The objects in the image can be characterized by different descriptors like gray levels,

color, texture, gradient, second derivative and by geometrical properties like area, perime-

ter, Fourier descriptors and invariant moments [43, 9]. For instance, Unay & Gosselin [10]

extract the background, stem, good peel and defective peel for classifying oranges.

In this section, the features obtained are a series of Zernike moments and the first ten

Principal Components.

We choose Zernike moments for calyx detection because they are rotation invariant [1],

which makes them suitable for analyzing symmetrical objects like calyxes. Zernike mo-

ments are very useful in image processing and recognition, and are widely used in face

detection applications, like in [29], where authors perform eye detection using Zernike

Moments and use a Support Vector Machine for classification.

In [5], a face recognition system for video surveillance is presented, where they perform

a comparison between Zernike moments, Eigenfaces (Principal Component Analysis) and

Fisherfaces.

Other image processing applications which use Zernike polynomials include a system

presented by [39] which uses Zernike polynomials to model the global shape of the cornea,

and use a decision tree classifier which takes as features the polynomial coefficients.

Other reason for trying Zernike polynomials are the good results obtained by Recce

et. al [37] for stem-end/calyx detection in oranges. We also choose to use Principal

Component Analysis as they are widely used in image processing tasks like face recognition

(eigenfaces) [7], and also for stem end/calyx detection in apples [20].
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4.3.1 Zernike Moments

Zernike Moments moments are very useful in image processing and recognition because

they are rotation invariant and form a complete orthogonal set over the interior of the

unitary circle [1]. The projection of the image over these sets are the Zernike moments [2].

The form of the polynomials is denoted by

Znm(x, y) = Znm(ρ, σ) = Rnm(ρ)e(jmθ), (4.1)

where j =
√
−1, ρ is the length from origin (0, 0) to (x, y), and θ the angle between the

x axis and the vector from origin to (x, y) in a counter clockwise direction, n ∈ N0 is the

order of the polynomial, and m ∈ Z is the rotation degree [3].

The restriction: n − |m| is even and |m| < n [1] has to be satisfied.

Rnm(ρ) is the radial polynomial defined by

Rnm(ρ) =

(n−|m|)/2
∑

s=0

(−1)s(n − s)!ρn−2s

s!(n+|m|
2 − s)!(n−|m|

2 − s)!
(4.2)

and according to Euler’s formula: e(jmθ) = cos(mθ) + jsin(mθ).

The Zernike moment Amn for a continuous function f(x, y) is defined as

Anm =
n + 1

π

∫ ∫

x2+y2≤1
f(x, y)Z∗

nm(ρ, θ)dxdy (4.3)

and for a digital image of size M × N as

Anm =
n + 1

π

M
∑

x=1

N
∑

y=1

f(x, y)Z∗
nm(ρ, θ) (4.4)

where [∗] denotes the complex conjugate [4]. Anm can also be seen as the multiplication of

the original image f(x, y) with a mask. Each component of the image Anm is a complex

value. In Figure 4.7 an image of a Zernike mask of order Z5,1 is shown.

For every image from the previous step, we compute the Zernike moments from order

n=1 to order n=12, so we obtain 48 Zernike-images. The first 12 Zernike Moments and

their dimensions are shown in Table 4.1. For each one we calculate the sum of the absolute

values of each pixel and these values are used in the classification step.
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(a) Z5,1 Real (b) Z5,1 Imaginary

Fig. 4.7: Zernike moment masks examples for n=5, m=1

Order n Dimension Zernike Moments

0 1 Z0,0

1 2 Z1,1

2 4 Z2,0 Z2,2

3 6 Z3,1 Z3,3

4 9 Z4,0 Z4,2 Z4,4

5 12 Z5,1 Z5,3 Z5,5

6 16 Z6,0 Z6,2 Z6,4 Z6,6

7 20 Z7,1 Z7,3 Z7,5 Z7,7

8 25 Z8,0 Z8,2 Z8,4 Z8,6 Z8,8

9 20 Z9,1 Z9,3 Z9,5 Z9,7 Z9,9

10 26 Z10,0 Z10,2 Z10,4 Z10,6 Z10,8 Z10,10

11 42 Z11,1 Z11,3 Z11,5 Z11,7 Z11,9 Z11,11

12 49 Z12,0 Z12,2 Z12,4 Z12,6 Z12,8 Z12,10 Z12,12

Tab. 4.1: First 12 Zernike Moments

4.3.2 Principal Component Analysis (PCA)

PCA is a procedure used in multivariate data analysis which performs an orthogonal linear

transformation to a set of correlated variables into a set of non correlated variables called

principal components (PC) [12]. One of the main purposes of this procedure is to obtain a

dimensionality reduction. Principal Component Analysis is used in several applications in

image processing, specially with large datasets or very large images like satellite images.

The projection of the variables into the new coordinate system is also called the

Karhunen-Loéve transform (KLT) or Hotelling transform [7].

When this method is applied to a set of correlated variables in a space of dimension

D, the transformation diagonalizes the covariance matrix and creates a new coordinate
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system. These coordinates are the Principal Components and they are sorted by decreasing

variance. This means that low order components explain the highest variance of the data,

and by keeping the P first components, most of the variability is retained, leading to a

dimensionality reduction (P << D) [12, 7].

The criterion used in this thesis for deciding how many components P are enough to

explain most of the variance, are the following:

1. The first criterion consists of adding the explained variance for each Principal Com-

ponent until the accumulated explained variance is higher than a certain threshold

(e.g. 80% of the total variance) [12]. Figure 4.8 (a) shows an example of this plot.

2. The second criterion is based on a SCREE plot of eigenvalues. The point in which

the curve tends to stabilize is the number of components required. An example is

shown in Figure 4.8 (b). In this example, the number of components to be chosen

should be five, since in that component the curve tends to stabilize.

3. The third criterion, which is valid only for PCA analysis using the correlation matrix,

consists of keeping the eigenvalues greater than 1, so the dimension of the space is

equal to the number of eigenvalues greater than 1.

The first two criteria can be applied when using both the variance-covariance matrix

and the correlation matrix, and the third can only be applied when using the correlation

matrix [12].

(a) Pareto plot which shows the percentage of

variance explained.
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(b) SCREE plot.

Fig. 4.8: PCA evaluation criteria.

In this thesis, we perform the Principal Components Analysis in the following way:

for every calyx candidate image Icc of size M × N obtained in the segmentation step, we

first convert from RGB to HSV to obtain the hue component and then convert the image

matrix to a vector of size 1×M ×N , obtaining a dataset of size nc ×M ×N of real values

ranging from 0 to 1, being nc the number of calyx candidate images of the dataset.
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The choice of the H component was done empirically comparing the results of perform-

ing PCA using R, G, B, H, S, V , and gray level components. These results are shown in

Figures 4.9 (a) and (b), where it can be seen that while the variance explained by the first

principal component is higher when using the Red and Saturation components compared

to the variance explained by the first component of the Hue component, the eigenvalues

of the second and third principal components of H are much higher than in the others,

thus the accumulated variance explained of H is higher than in the rest.

(a) SCREE plot

(b) Accumulated SCREE plot

Fig. 4.9: SCREE plots showing the variance explained by performing PCA over each component

of the RGB and HSV color spaces

As all the variables are in the same unit and within the same range, we perform the

Principal Component Analysis over the covariance matrix, without needing to standardize

the data [12]. The results of the PCA are the coefficients of the linear transformation

(Cpca), which are used to obtain the projected images (Pij) in the new coordinate system.
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In [12], the number of components P needed in the classification step is P=3 or P=4.

If we consider the SCREE plot, the number of components when the curve stabilizes is

around P=5. However, in order to compare the performance of the classifiers using many

different number of PCs, we keep the first ten principal components to use them in the

classification step.

An example of the values of the first two components for classifying calyxes or defects

is shown as a scatter plot in Figure 4.10.

Fig. 4.10: Scatter plot of the first two principal components for calyx and defect detection

Once the features of the Zernike moments and Principal Components are extracted, a

consolidated dataset is built. It contains nc rows (one for each calyx candidate), and 58

columns (48 from the Zernike moments and 10 from the first PCs). Also the class was

added to the dataset in order to use supervised learning algorithms.
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4.4 Classification Results

4.4.1 Validation methods

Once a classification model is built using training examples, the model is validated with

unknown instances. For this purpose, we use ten fold cross validation to validate the

algorithms. This consists of partitioning the data set in k subsets, using k − 1 subsets for

training and model generation, and the other subset to validate the obtained model. This

process is repeated k times using always a different subset for the validation, and finally

all the results are averaged to produce a single estimation [48].

After applying different models, we analyze the confusion matrix, Area under the ROC

curve (AUC) and compare the accuracy of the classifiers (percentage of cases correctly

classified over the total of cases classified).

4.4.2 Datasets

For the calyx detection experiment, we use a total of 861 pictures, where in 234 images

the calyx is visible, and in 627 images the calyx is hidden.

During the pre processing and segmentation steps, from the 234 images where there is

a calyx, 221 candidate regions with a calyx are obtained, which means that 94.44% of the

calyxes are found. The ones not detected are mostly because the calyx is near the border

of the orange. This is not a big issue since the calyx not detected in one image is detected

in other image of the same orange but taken from a different angle when using the mirror

system.

We also obtain 85 candidate regions where there is not a calyx present (there’s a

defect), leading to a total of 306 calyx candidate pictures in which 72.22% are possitive

examples, so the accuracy classification baseline is 72.22%. This means that a random

classifier obtains a 72.22% accuracy, so data mining algorithms should improve this value.

The features extracted are the 48 Zernike moments and the 10 first Principal Compo-

nents

Calyx classification results are shown in Table 4.3 and Figure 4.11.

4.4.3 Calyx Classification Results

Using Zernike Moments:

When using all the 48 Zernike moments, the best results are obtained by the Logistic

Model Tree (LMT) with 88.22% accuracy and an Area under the ROC curve (AUC) of

0.89, followed by the Multilayer Perceptron neural network with Backpropagation (MLP)

algorithm a 87.9% accuracy and an AUC of 0.9.
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However, when using only the first 5 moments, the Multilayer perceptron increases

its accuracy to 88.88% and AUC to 0.91, and the Logistic model tree achieves 88.66%

accuracy with an AUC of 0.91.

Also, good results are obtained when using only the first 3 Zernike moments: the

Multilayer perceptron achieves an accuracy of 88.87% and an AUC of 0.91 while the

Logistic Model Tree has an accuracy of 88.12% and an AUC of 0.91.

We perform Chi Squared Attribute Evaluation with Ranker, and pick-up the first 20

attributes to perform the classifier’s comparison. The results obtained are worse than

using all the 48 Zernike moments: MLP and LMT achieve an accuracy near 84% and an

AUC near 0.9, while SMO and RBF Network equal the baseline accuracy of 72.24%.

Using Principal Component Analysis (PCA): The best accuracy is obtained

when using only the first 10 principal components, and is achieved by the Radial Basis

Function Network with 81.05% accuracy and an AUC of 0.84. The same algorithm obtains

an accuracy of 80.82% and an AUC of 0.86 when using only the first three principal

components.

Combining Zernike Moments and Principal Component Analysis: We per-

form several combinations of Zernike moments and principal components. The best results

are obtained with the Logistic Model tree when combining the first 5 Zernike moments

with the first two principal components, obtaining an accuracy of 89.87% and an AUC of

0.93.

We also obtained similar results with the Multilayer Perceptron Neural Network when

combing the first 5 Zernike moments with the first principal component, achieving an

accuracy of 88.89% and an AUC of 0.92.

The confusion matrix of these classifiers are shown in Table 4.2

Algorithm

`
`

`
`

`
`

`
`

`
`

`
`

`
`

`
`̀

True class

Predicted class
Calyx Defect Accuracy AUC

Zernike 5, PCA 2 Calyx 213 8
89.87% 0.93

LMT Defect 23 62

Zernike 5, PCA 1 Calyx 209 12
88.89% 0.92

MLP Defect 22 63

Tab. 4.2: Calyx classification confusion matrices
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Attributes
RBF SMO MLP LMT

%Accu. AUC %Accu. AUC %Accu. AUC %Accu. AUC

Zernike48 72.24 0.60 74.63 0.55 87.90 0.90 88.22 0.89

Zernike10 72.24 0.61 72.24 0.50 88.66 0.91 88.10 0.90

Zernike5 72.24 0.63 72.24 0.50 88.88 0.91 88.66 0.91

Zernike4 72.24 0.63 72.24 0.50 88.77 0.91 87.79 0.90

Zernike3 72.34 0.63 72.24 0.50 88.87 0.91 88.12 0.91

PCA 10 81.05 0.84 72.89 0.52 76.60 0.74 77.35 0.73

PCA 5 80.06 0.86 73.33 0.52 78.12 0.77 79.41 0.82

PCA 3 80.82 0.86 72.68 0.51 78.33 0.77 77.78 0.82

PCA 2 80.29 0.86 72.24 0.50 78.87 0.79 78.46 0.83

PCA 1 77.35 0.76 52.24 0.50 75.28 0.40 75.61 0.68

Zer48, PCA10 73.53 0.75 78.66 0.63 87.38 0.85 88.97 0.85

Zer10, PCA10 80.73 0.78 74.33 0.53 86.83 0.84 87.44 0.84

Zer5, PCA10 81.27 0.80 73.22 0.53 86.61 0.83 87.23 0.83

Zer5, PCA2 78.51 0.78 72.78 0.51 87.79 0.91 89.87 0.93

Zer5, PCA1 73.52 0.73 72.24 0.50 88.89 0.92 87.79 0.91

Zer ChiSq.20 72.24 0.63 72.24 0.50 83.98 0.90 83.86 0.89

Zer ChiSq.5 71.80 0.64 72.24 0.50 71.14 0.64 71.69 0.50

Tab. 4.3: Calyx classification results

4.5 Calyx removal

Once the classification result of a candidate region is obtained, we take different actions

depending if the result is a calyx or a defect. On the one hand, if the candidate region is

classified as a calyx, we replace in the original image of the orange, the section detected

as a candidate region with the mean color of the rest of the orange. Doing this, the calyx

is replaced by the mean color of the orange’s skin so the orange grading subsystem will

not mistake a calyx as a defect.

On the other hand, if the candidate region is classified as a defect, we add 1 to the

defects counter of the orange being analyzed, which will be used as a feature in the orange

classification step.

41



Fig. 4.11: Comparison of classifiers accuracy among the different attributes selection.

4.6 Conclusions

As an essential part of the fruit grading system, the stem-end/calyx detection subsystem

is the responsible for distinguishing a calyx from a defect.

After acquiring the image, it is necessary to improve the quality of the picture and

identify the regions of interest (ROI) by removing the background and identifying the

regions where the different views of the orange are present when using the mirror capture

system.

Then, we segment the images into calyx candidate regions using k-means clustering

over the CIE L*a*b* color space, and once we have all the candidate regions, we use

Zernike polynomials and perform Principal Component Analysis to extract the features

to be used in the calyx classification step.

Although the amount of descriptors retrieved might seem excessive, the data mining

algorithms should discard the less significant attributes, and we also experiment using fea-

tures subset selection algorithms in order to keep only the most significant attributes and

compare the classification results using different datasets containing different combinations

of features.
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After the dataset is built, we perform the classification of candidate regions as calyxes

or defects, using machine learning algorithms like Logistic Model Tree, Multilayer percep-

tron network with backpropagation, Sequential minimal optimization for support vector

machine and Radial basis function network.

The results of the experiments show that both Logistic Model Tree and Multilayer

Perceptron neural network achieve very good accuracy (89.87% for LMT and 88.89% for

MLP) and a very good AUC value (0.93 for LMT and 0.92 for MLP) when processing

datasets with the first 5 Zernike moments and the first two and one principal components

respectivly.

The Radial Basis Function Network achieves the highest accuracy (81.05%) when pro-

cessing a dataset with only principal components. However, its performance decreases

significantly when using a dataset which contains only Zernike moments.

SMO shows very poor results, with a maximum accuracy of only 78.66% achieved when

using the dataset with the 48 Zernike moments and the first 10 principal components.

The comparison of all the classifiers analyzed using the different data sets are shown

in Table 4.3 and Figure 4.11.

Based on the obtained results, the chosen classifier for us would be the Logistic Model

Tree, because of its high accuracy across the different attributes configuration, and also

because of the easier interpretation of the model compared to neural networks. According

to the bibliography, one of the disadvantages of this classifier is the high computational cost

for real time applications [42], that is not analyzed in this thesis but should be considered

in a future work because of the real time requirements of fruit grading production lines.

The obtained accuracy (89.87%) can be compared to results of similar researches per-

formed by other authors. Unay and Gosselin [10] classify apple’s calyx/stem-end with 81%

accuracy when using a KNN classifier and 90.5% accuracy using SV M . Ruiz et. al [34]

achieve 93% accuracy when classifying stem, calyx and leaves against skin and background

in oranges using Bayesian decision rules.
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5. QUALITY CATEGORIES CLASSIFICATION

The quality classification subsystem is one of the main parts of the orange grading system.

Its input is the output of the calyx detection subsystem, consisting of the original image

captured by the image capture subsystem, already pre-processed and mirror segmented

and with the calyx removed. The purpose of this step is to process the image in order to

describe that picture as a series of features that are used by the data mining algorithms in

the classification step to classify the orange into one of the three pre-established categories.

This chapter is one of the most relevant parts of this thesis.

A diagram of the Input-Process-Output is shown in Figure 5.1, which shows that the

input to the classification algorithms is a dataset containing the features extracted, and

the output of the process is the classification result.

Fig. 5.1: Input-Process-Output diagram of the system where features are extracted, processed and

classified

The quality categories classification subsystem is further divided into the following

steps:

• Feature extraction

• Classification



Pre-processing and segmentation tasks have already been described in section 4.1 and

no further pre-processing or segmentation is needed at this step.

A diagram of this process can be seen in Figure 5.2.

Fig. 5.2: Image processing steps.

5.1 Feature extraction

In this section, the features obtained are the area of the orange and the background, the

fractal dimension of region Io, the contrast, gray level uniformity, gray level correlation

between neighbours, histogram, and the mean and median calculated in the HSV color

space.

The data mining algorithms used in the classification step should automatically detect

the most relevant attributes (features) needed to perform the classification, discarding the

rest. Therefore, in the feature extraction step we gather as many descriptors as we can in

order to make classification algorithms more effective.

Next we explain in detail each one of the features extracted.

• Orange area: The area of the orange Ao is calculated as the sum of the pixels be-

longing to the orange: Ao =
∑144

i=1

∑192
j=1 f(i, j), where f(i, j) =

{

1 if (i, j) ∈ In

0 in other case

We also calculate the complement descriptor (background area) Ab.

• Fractal dimension analysis:

The fractal dimension FD of a set in R
n, is a real number which characterizes its

geometrical complexity, and can be used as an irregularity indicator of a set [27, 54].

The FD is defined for self-similar sets, and in the case of sets which do not have this

property, the FD has to be estimated [57].

One of the methods proposed in [27] to estimate FD and characterize the smooth-

ness level in a section of an image is the box-counting dimension. This method is

commonly used because it exhibits a good balance between computation time and
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accuracy. However, this estimation has the inconvenient that can only be applied to

binary images.

The box-counting dimension of a planar set A consists of estimating how changes

the quantity of cells in which the set has no null measure, as function of the size of

those cells.

Being Nl(A) the quantity of cells of side l where the set has no null measure, the

box-counting dimension DB of A is

DB = lim
l→0

log(Nl(A))

log(1
l )

, (5.1)

if the limit exists. In practice, for finite resolution images, l has superior and inferior

limits, and DB can be estimated with the slope of the minimum square regression

that approximates the logarithmic diagram log(Nl(A))vs. log(1
l ).

Given a binary image, it is partitioned in cells of side l, and for different values of l,

the quantity Nl(A) of cells in which the object of interest (foreground) has no null

measure is calculated. Except the case in which l = 1, for all l, it is necessary to

make many partitions of the image and calculate Nl(A) as the average. Then, DB

is estimated as the minimum square regression slope previously mentioned.

To be able to apply this method it is necessary to transform the image to binary, so

a thresholding process has to be applied for this purpose. In this thesis, in order to

obtain the texture of the peel of the fruit to estimate the fractal dimension, we start

from a gray level image of the orange with the background removed, and apply a

border detection procedure with the Canny [13] algorithm, getting the image Ican.

Then, the box counting dimension DB is calculated over the image Ican. A result

of 1 means that the texture of the orange’s peel is smooth, which means that it is

a good quality orange. In the opposite side, for greater imperfections, the value of

the estimator DB tends to increase.

Table 5.1 shows the results of the border detection with the Canny algorithm, and

the fractal dimension obtained for a good quality orange and a defective quality one,

where it can be seen that the value of DB in the good orange is lower (tending to

1) than in the defective one.

• Texture analysis using statistical descriptors: For the texture analysis we use

six statistical descriptors, which use a co-occurrences gray level matrix. This is made

calculating the number of adjacent pixel repetitions with the same gray level in the

whole image.

The statistical descriptors used are:

– Contrast: The global contrast of the image (also known as variance or in-

ertia) measures the contrast intensity between a pixel and its neighbour. Its

calculation is based on the corresponding co-occurrences matrix.
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Good orange Defective orange

Original image

Border detection

Fractal Dimension 1.0887 1.2688

Tab. 5.1: Steps in the estimation of the fractal dimension

– Correlation: Measures the relation of a pixel and its neighbour. The degree

in which if the gray level of a pixel increases, its neighbour also increases.

– Energy: Also known as ’uniformity’, ’energy uniformity’ and ’second angular

moment’, consists of the sum of the squared elements in the co-occurrences

matrix taken by pairs.

– Homogeneity: It is a value that measures the closeness of the distribution of

elements of the co-occurrences matrix to the main diagonal of that matrix.

– Skewness: It is a measure of the degree of asymmetry of a distribution around

the mean. It is obtained by calculating the third standardized central moment

of the distribution. If the obtained value is zero, it means that it is centered

(like the normal distribution). If it is positive, it is asymmetrical to the right,

and if it is negative, to the left [22].

– Kurtosis: Measures how distant is the distribution of the data to the normal

distribution. Is the result of calculating the fourth standardized central moment

of a distribution. The kurtosis of the normal distribution is 3. A value greater

than 3 (platykurtic) means that the distribution is flatter (with thicker tails),

and a distribution with kurtosis less than 3 (leptokurtic) means the opposite

(thiner tails and a sharp peak) [22].

A comparison of the values of these statistical descriptors of a good and defective

orange are shown in Table 5.2

• Histograms analysis: We analyze the histograms of the red Hr, green Hg, blue

Hb, and the gray levels Hgray histograms. A RGB histogram example can be seen

in Figure 5.3. To simplify the analysis, we divide the histograms in six bins. For

example, for the red component, the first bin is the amount of pixels in the image

which values belong to the interval [0, 255
6 ), the second bin [2556 , 255

6 × 2) and so on

until the six intervals are covered.
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Good orange Defective orange

Original image

Contrast 0.1553 0.2852

Correlation 0.9796 0.9787

Energy 0.6097 0.4265

Homogeneity 0.9862 0.9506

Skewness -1.32509 -0.5779

Kurtosis 2.812565 1.3816

Tab. 5.2: Texture analysis features comparison

Fig. 5.3: Histogram analysis of the Red, Green and Blue components of an orange image

• Mean and median analysis in the HSV color space: We take color values in

the region of a circumscribed rectangle inside the orange region. This rectangle is

divided into smaller regions forming a grid, and for each box several measures are

taken.

For this experiment, we use a grid of 3 rows and 3 columns, and for each row

the mean and median of each of the 3 components of the HSV color space are

calculated, getting a total of 54 attributes. This process can be seen in Figure 5.4,

and a comparison of the values obtained for the sixth position of the grid is shown

in Table 5.3.

The HSV color space is used based on the good results reported in [35].
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Fig. 5.4: Region of the image used to extract the mean and median features of the HSV color

space.

Good orange Defective orange

Original image

Hue Mean 0.0349 0.0622

Saturation Mean 0.4982 0.7904

Value Mean 0.8044 0.3713

Hue Median 0.0590 0.0572

Saturation Median 0.9434 0.7931

Value Median 0.6588 0.3529

Tab. 5.3: HSV mean and median features comparison. Hue ranges from 0 (0o=red) to 1 (360o),

saturation ranges from 0 (unsaturated) to 1 (fully saturated), and value ranges from 0

(black) to 1 (brightest)

5.2 Classification Results

For this experiment we use a data set obtained after processing a total of 892 oranges’

images, which contains 314 high quality oranges’ images, 473 intermediate quality oranges’

images and 105 defective quality oranges’ images. For each specimen, we extract the 95

previously described features, which are all numerical attributes. The class assignment

was done manually by the authors, based on visual features and on expert’s advise.

When analyzing the results, we perform a cost sensitive evaluation, since the cost of

misclassifying a defective orange as a good orange is much higher than misclassifying a

good orange as defective, because if a good orange is classified as defective, the revenue

obtained by selling the fruit as a lower category will be lower than selling it as a good one.

However, if a defective orange is sold as good, it is sold at a higher price, but when the

buyer finds out that defective oranges have been sold as good, he can demand the seller

to pay a fine and he will likely not buy anymore products.

The cost-matrix used is shown in Table 5.4.
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True class

Predicted class
Good Intermediate Defective

Good 0 1 2

Intermediate 2 0 1

Defective 5 2 0

Tab. 5.4: Cost-Matrix

• Results obtained with a J48 decision tree: After training a J48 decision tree

with the described dataset, the decision tree shown in Figures 5.7 a) and 5.5 is

generated. It can be seen that the attribute fractalDim (the fractal dimension) is

in the root of the tree. This means that this is the best attribute to differentiate

between classes.

Fig. 5.5: J48 Decision tree

As it can be seen in the confusion matrix shown in Table 5.6, the accuracy achieved

by the classifier is 71.08%. From all of the classification errors we obtain, there are

4 good oranges misclassified as defective, and 2 defective oranges misclassified as

good. The rest of the misclassifications are between the ’intermediate’ class and the

others, thus the cost is 420.

We also trained a decision tree with the same configuration but using only two

classes (’good’ and ’defective’) from the original dataset. The obtained decision tree

is shown in Figure 5.6, where it can be seen that it contains the fractal dimension

attribute as root node. This classifier achieves a 94.75% accuracy and an area under

the ROC curve of 0.93, as it can be seen in the confusion matrix shown in Table 5.5.
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Fig. 5.6: J48 decision tree for only two classes: ’good’ and ’defective’.

• Results obtained with a Best First decision tree: Figure 5.7 b) shows the

model generated by the Best First algorithm. In the root node it has the third bin

of the red histogram, and other discriminant attributes are the histograms of the

green and gray components of the RGB color space and the fractal dimension. The

accuracy of this model is 72.20% and the total cost is 398 (see Table 5.6).

• Results obtained with a Logistic Model Tree (LMT ): The model built with

the LMT algorithm achieves an accuracy of 81.73%, and as it can be seen in the

confusion matrix shown in Table 5.6, it does not commit any classification mistake

between ’good’ and ’defective’ classes. Thus, with its cost being the lowest one with

252, it is the best model obtained for classifying oranges in three classes.

• Results obtained with a Random Forest decision tree: The accuracy obtained

with this tree is 73.54%. Analyzing the confusion matrix, we notice that there is

only one error between the ’good’ and ’defective’ classes, but there are many errors

between the ’intermediate’ and other classes, having a cost of 368.

• Results obtained with a Simple CART decision tree: This decision tree

achieves an accuracy of 72.76% and a cost of 383 (see Table 5.6), creating a model

similar to the one obtained with the Best First algorithm (see Figure 5.7 b)), as

it has the third bin of the red histogram as the root element, and has the fractal

dimension and the histograms of the green and gray components of the RGB color

space among other discriminant attributes.
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a) J48

fractalDim <= 1.190237

| red3 <= 123

| | correlationH <= 0.975922: intermed (20.0/7.0)

| | correlationH > 0.975922

| | | gray6 <= 1220

| | | | green1 <= 2: good (42.0)

| | | | green1 > 2

| | | | | skewnessGray <= -2.183524

| | | | | | DBC128_191 <= 2.104028: good (17.0/3.0)

| | | | | | DBC128_191 > 2.104028: intermed (16.0)

| | | | | skewnessGray > -2.183524

| | | | | | fractalDim <= 1.119564: good (95.0/4.0)

| | | | | | fractalDim > 1.119564

| | | | | | | gray5 <= 408

| | | | | | | | VMean9 <= 0.099359: good (15.0/5.0)

| | | | | | | | VMean9 > 0.099359: intermed (16.0/1.0)

| | | | | | | gray5 > 408: good (68.0/12.0)

| | | gray6 > 1220: intermed (20.0/6.0)

| red3 > 123

| | correlation <= 0.973437: intermed (69.0/25.0)

| | correlation > 0.973437

| | | gray3 <= 16

| | | | green5 <= 1512: intermed (26.0/5.0)

| | | | green5 > 1512

| | | | | DBC <= 1.95728

| | | | | | Hmean7 <= 0.092857: good (17.0/5.0)

| | | | | | Hmean7 > 0.092857: intermed (25.0)

| | | | | DBC > 1.95728

| | | | | | fractalDim <= 1.114206: good (33.0/6.0)

| | | | | | fractalDim > 1.114206: intermed (28.0/12.0)

| | | gray3 > 16

| | | | Hmean6 <= 0.074675

| | | | | green5 <= 4227: intermed (18.0/5.0)

| | | | | green5 > 4227: good (15.0/3.0)

| | | | Hmean6 > 0.074675: intermed (212.0/10.0)

fractalDim > 1.190237

| red3 <= 148: good (15.0/7.0)

| red3 > 148

| | contrast <= 0.164776

| | | DBC192_255 <= 2.046449: deffecti (30.0/8.0)

| | | DBC192_255 > 2.046449

| | | | DBC0_63 <= 2.00646: deffecti (29.0/13.0)

| | | | DBC0_63 > 2.00646: intermed (36.0/6.0)

| | contrast > 0.164776: deffecti (30.0/1.0)
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b) BFTree

red3 < 131.0

| green5 < 1042.5

| | red3 < 16.0: good(47.0/12.0)

| | red3 >= 16.0: intermed(43.0/27.0)

| green5 >= 1042.5: good(167.0/33.0)

red3 >= 131.0

| fractalDim < 1.19042

| | gray3 < 23.5

| | | green5 < 1695.5: intermed(50.0/19.0)

| | | green5 >= 1695.5

| | | | DBC < 1.96616

| | | | | VMean7 < 0.09423: good(12.0/5.0)

| | | | | VMean7 >= 0.09423: intermed(29.0/2.0)

| | | | DBC >= 1.96616: good(39.0/25.0)

| | gray3 >= 23.5

| | | Hmean5 < 0.07167: good(16.0/15.0)

| | | Hmean5 >= 0.07167: intermed(208.0/16.0)

| fractalDim >= 1.19042

| | gray5 < 2.5

| | | fractalDim < 1.20863: deffecti(6.0/4.0)

| | | fractalDim >= 1.20863: deffecti(30.0/0.0)

| | gray5 >= 2.5

| | | fractalDim < 1.25802

| | | | DBC < 1.9595: deffecti(15.0/6.0)

| | | | DBC >= 1.9595

| | | | | fractalDim < 1.20052: deffecti(6.0/5.0)

| | | | | fractalDim >= 1.20052

| | | | | | Hmean5 < 0.10536: intermed(8.0/5.0)

| | | | | | Hmean5 >= 0.10536: intermed(30.0/1.0)

| | | fractalDim >= 1.25802: deffecti(10.0/1.0)

c) Simple CART

red3 < 131.0

| green5 < 1042.5

| | red3 < 16.0: good(47.0/12.0)

| | red3 >= 16.0: intermed(43.0/27.0)

| green5 >= 1042.5: good(167.0/33.0)

red3 >= 131.0

| fractalDim < 1.19042: intermed(332.0/104.0)

| fractalDim >= 1.19042

| | gray5 < 2.5: deffecti(36.0/4.0)

| | gray5 >= 2.5

| | | fractalDim < 1.25802

| | | | DBC < 1.9595: deffecti(15.0/6.0)

| | | | DBC >= 1.9595: intermed(42.0/13.0)

| | | fractalDim >= 1.25802: deffecti(10.0/1.0)

Fig. 5.7: Decision trees and classification rule models.
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• Results obtained with a Multilayer Perceptron Neural Network with

Backpropagation: The network consists of 95 nodes in the input layer (one for

each attribute), 3 in the output layer (3 classes), and 48 in the hidden layer. The

accuracy (76.68%) and cost (346) obtained are shown in Table 5.6.

If the same neural network is trained but considering only two classes (good and

defective), we obtain as a result an accuracy of 97.37% with an area under the ROC

curve (AUC) of 0.99. This can be seen in Table 5.5.

• Results obtained with a Radial Basis Function Network: The model ob-

tained with this algorithm achieves the worst accuracy among all the classifiers

tested, with a value of 61.32%. The cost produced is also the worst with 631.

• Results obtained with a Sequential Minimal Optimization for Support

Vector Machines Network: This network produces very good results, because it

reaches an accuracy of 79.15% without any classification error between the good and

defective classes, leading to a cost of 303.

• Results obtained with a One Rule classification rule: The One Rule classifi-

cation rule achieves a very bad accuracy of 65.58% and a cost of 514.

Results obtained using a neural network with previous attribute selection:

After analyzing the results of the neural networks using the complete set of attributes

for training, we decide to try three multilayer perceptron networks using datasets which

have been previously reduced in the amount of attributes by the methods previously

explained in section 2.2.6.

• Correlation based feature subset selection method: We apply the Correla-

tion based feature subset selection evaluator together with the Best First search

algorithm. The Best First search algorithm performs a greedy hill-climbing with

backtracking over the attribute space [40]. As a result, we obtain that the most sig-

nificant attributes are the fractal dimension, the box counting dimension, the first

range of the green component, the third range of the gray histogram, the third range

of the red component histogram, the fifth range of the blue component histogram,

the homogeneity and correlation of the hue component of the HSV color space.

When using this subset with the multilayer perceptron neural network, we obtain

the confusion matrix shown in Table 5.6, where it can be seen that the classifier

accuracy (75.67%) decreases slightly compared to the results obtained when using

all the available attributes (76.68%), but the computational time used to build the

model is reduced 40 times (from 269 seconds when using all the attributes to 6.7

seconds when using 20 attributes) because there are less attributes involved.

• Chi Squared Attribute Evaluator for features subset selection: When ap-

plying Chi Squared Attribute Evaluator together with the Ranker method, which
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performs a ranking over the most significant attributes, we obtain that the fractal di-

mension, contrast, the third range of the red component histogram, the box counting

dimension, the third range of the gray component histogram, and the homogeneity

are the most significant attributes.

The resulting confusion matrix can be seen in Table 5.6, where it shows that the

percentage of correctly classified instances is 78.81%, but it classifies one good orange

as defective. However, its cost of 294 is very good.

• Information Gain attribute evaluation: With the Information gain attribute

evaluator, we obtain the best results when using a multilayer perceptron neural

network, with an accuracy of 79.48%. However, it classifies one defective orange as

good. Even though, it produces the second lowest cost of 293. The most significant

attributes are the third range of the red component, the fractal dimension, the third

range of the gray component, the box counting dimension, the first range of the red

component histogram, the contrast and homogeneity.

Algorithm

`
`

`
`

`
`

`
`

`
`

`
`

`
`

`
`̀

True class

Predicted class
Good Defective Accuracy AUC

J48 2 classes
Good 303 11

94.75% 0.93
Defective 11 94

MLP 2 classes
Good 309 5

97.37% 0.99
Defective 6 99

Tab. 5.5: Orange classification results considering only two classes: Good and Defective
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Algorithm

X
X

X
X

X
X

X
X

X
X

X
X

XX

True class

Predicted
Good Inter. Defective Accuracy % Avg. Cost

J48

Good 238 72 4 75.8%

71.08% 420Intermediate 97 346 30 73.2%

Defective 2 47 56 53.3%

BFTree

Good 233 81 0 74.2%

72.20% 398Intermediate 95 355 23 75.1%

Defective 2 47 56 53.3%

LMT

Good 258 56 0 82.2%

81.73% 252Intermediate 52 403 18 85.2%

Defective 0 37 68 64.8%

Random
Good 218 96 0 69.4%

73.54% 368Intermediate 68 394 11 83.3%

Forest Defective 1 60 44 41.9%

Simple
Good 235 77 2 74.8%

72.76% 383Intermediate 85 359 29 75.9%

Cart Defective 1 49 55 52.4%

Multilayer
Good 254 60 0 80.9%

76.68% 346Intermediate 91 360 22 76.1%

Perceptron Defective 4 31 70 66.7%

RBF
Good 224 88 2 71.3%

61.32% 631Intermediate 162 271 40 57.3%

Network Defective 23 30 52 49.5%

SMO

Good 250 64 0 79.6%

79.15% 303Intermediate 53 415 5 87.7%

Defective 0 64 41 39.0%

1R

Good 207 105 2 65.9%

65.58% 514Intermediate 79 378 16 79.9%

Defective 7 98 0 0.0%

MLP with Good 258 56 0 82.2%

75.67% 394CfsSubset Intermediate 98 361 14 76.3%

Eval Defective 10 39 56 53.3%

MLP with Good 258 55 1 82.2%

78.81% 294Chi Intermediate 75 369 29 78.0%

Squared Defective 0 29 76 72.4%

MLP with Good 263 51 0 83.8%

79.48% 293Information Intermediate 76 372 25 78.6%

Gain Defective 1 30 74 70.5%

Tab. 5.6: Orange grading results
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5.3 Conclusions

Once the segmentation process is finished, we apply several image processing techniques

to obtain several descriptors of that image, like area, fractal dimension, texture statistical

descriptors, color descriptors from histogram analysis, and statistical descriptors from the

HSV color space.

Then, in the classification step we apply nine data mining algorithms for orange quality

classification through visual features. The first group of algorithms are decision trees (J48,

Best First, Logistic Model Tree, Random Forest and Simple CART), the second group

consists of neural networks (Multilayer Perceptron, Radial Basis Function and Sequential

Minimal Optimization) and then a classification rule (1Rule) is analyzed.

The main advantage of decision trees and classification rules over neural networks are

their simplicity and interpretation of the obtained classification rules, as neural networks

work as a black box and the model produced by the algorithm are much more difficult to

interpret.

Although most of the algorithms produce good results (with an accuracy higher than

75%), the Logistic Model Tree, Sequential Minimal Optimization neural network and

Multilayer perceptron neural network with attribute selection are the ones which, in the

experiments done, produce the models with the highest accuracy (about 80%). Most of the

errors produced by the SMO algorithm are defective oranges misclassified as intermediate

ones (64 errors) and good oranges misclassified as intermediate ones (64 errors), while the

Logistic Model Tree misclassifies 56 good oranges as intermediate, 52 intermediate as good

and other misclassifications between intermediate and defective classes.

One of the drawbacks of SMO is that only 39% of the defective oranges are classified as

such, while with the LMT 64.6% of the defective oranges are correctly classified, and with

the Multilayer perceptron with attribute subset selection using Information Gain, 70.5%

of the oranges are correctly classified. However, MLP with Information Gain misclassifies

one defective orange as good.

Analyzing the results, we choose the Logistic Model Tree as the best classifier, because

not only it achieves the highest classification accuracy (81.73%) and the lowest cost (252),

but also the model produced by a Logistic Model Tree is easier to interpret by humans

compared to the one produced by the Multilayer perceptron and SMO neural networks.

On the opposite side, the algorithms with the worst accuracy are the Radial Basis

Function Network (61.32%), which misclassifies 23 defective oranges as good and 2 good

as defective, and the One Rule algorithm (65.58%), which misclassifies 2 good oranges as

defective and 7 defective as good.
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6. CONCLUSIONS AND FUTURE WORKS

In the food industry, quality assurance processes can benefit from automated visual in-

spection, because it provides a uniform way of performing the classification, and free the

workers from the repetitive task of visually inspecting one by one all the harvested fruit.

Performing an accurate classification is crucial in order to fulfill the quality require-

ments established by several organizations to allow the commercialization of the fruits for

specific markets. If a good quality orange is misclassified as defective or intermediate, it

will be sold at a lower price, but if a defective orange is misclassified as good, it might

lead to the application of fines for selling defective oranges as good; or if the defect is an

illness, it can lead to discard the whole lot of fruits, causing a considerable loss of money.

The development of an automated orange grading system is not a trivial task, as the

defects found in the fruits can be of very different types and do not usually exhibit a known

pattern. Thus, they cannot be detected using conventional image processing techniques.

One of the most difficult tasks faced in fruit grading systems is the detection of the

calyx, which is necessary in order not to misclassify the calyx as a defect. A wrong

detection of the calyx would reduce the overall accuracy of the orange grading system,

either if it detects a calyx where in fact is a defect which will classify a defective orange

as good, or if it does not detect the calyx, downgrading the obtained category.

Along this thesis we have proven the feasibility of building an automatic orange grading

system using data mining and image processing techniques.

The process starts by capturing images from all possible angles using an inspection

chamber with a digital camera and a set of mirrors. Then, the background is removed

and a segmentation step which uses k-means clustering over the CIE L*a*b* color space

detects the candidate regions where it is likely to find a calyx. Next, Zernike Moments

and Principal Components features are extracted in order to build a dataset to be used

in the classification step to classify the region as a defect or a calyx. In this step, we

compare several machine learning algorithms, choosing the Logistic Model Tree as the

best classifier, because of its high accuracy across the different datasets and attributes

configuration, and also because of the easier interpretation of the model compared to the

neural networks.

Next, the quality categories classification subsystem receives as an input the image of

the orange with its calyx removed, where several geometric, textural and statistical fea-

tures are extracted, being the fractal dimension, the contrast attribute of the HSV color



space, the third range of the red component histogram and the fifth range of the green

component histogram some of the most relevant features obtained. With these features, in

the classification step we build a dataset and apply several machine learning algorithms,

being the Logistic Model Tree, Sequential Minimal Optimization neural network and Mul-

tilayer Perceptron neural network with Backpropagation the classifiers which achieve the

best classification rates.

Most of this work can also be applied to classifying other kinds of fruit, specially citrus.

However, several adjustments should be done depending on the color, shape, texture and

other features of the fruit. Also, the data mining algorithms should be retrained in order

to learn the new kind of problem. We intend to analyze the application of the system to

other types of fruits in a future research.

Another area we are interested in is to classify the detected defects into different

categories of defects and identify illnesses.

In a future work, we will optimize the processing speed of the algorithms. To do this, it

will be necessary to measure the amount of oranges classified in a certain amount of time,

like for example the amount of oranges classified per second. This will be done taking into

account the speed requirements of real production lines.

We are also interested in implementing in the future the image capture subsystem and

classified oranges placement subsystem in order to integrate all the hardware and software

components and be able to test the whole orange grading system in real production lines.

59



BIBLIOGRAPHY

[1] Gholamreza A., Ali E., George B., and Mircea N. Accurate and efficient computation

of high order Zernike moments. In ISVC, pages 462–469, 2005.

[2] Khotanzad A. and Hong Y. H. Invariant image recognition by Zernike moments.

IEEE Trans. Pattern Anal. Mach. Intell., 12(5):489–497, 1990.

[3] Palak K. A. and Koduvayur P. S. Rotation and cropping resilient data hiding with

Zernike moments. In ICIP, pages 2175–2178, 2004.

[4] Wiliem A., Vamsi K., Wageeh B., and Prasad Y. A face recognition approach using

Zernike moments for video surveillance. In RNSA Security Technology Conference,

Melbourne, Australia, 2007.

[5] Wiliem A., Vamsi M., Wageeh B., and Prasad Y. Eye detection in facial images

using Zernike moments with SVM. In RNSA Security Technology Converence 2007,

School of Engineering Systems, Queensland University of Technology, pages 341–355,

Melbourne, Australia, 2007.

[6] Galiano F. B. ART: Un método alternativo para la construcción de árboles de decisión.
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[49] González R.C., Woods R., and Eddins S. Digital Image Processing Using MATLAB.

Pearson Prentice-Hall, 2004.

[50] Holte R.C. Very simple classification rules perform well on most commonly used

datasets. Mach. Learn., 11(1):63–90, 1993.

[51] Haijian S. Best-first decision tree learning. Master’s thesis, University of Waikato,

Hamilton, NZ, 2007. COMP594.

[52] Haykin S. Neural Networks. A Comprehensive Foundation Second Edition. Prentice

Hall International Inc, 1999.

[53] Carg A. Sebe N., Cohen I. and Huang T. Machine Learning in Computer Vision.

Springer, 2005.

[54] Chen S.S., Keller J.M., and Crownover R.M. On the calculation of fractal features

from images. Pattern Analysis and Machine Intelligence, 15(10):1087–1090, 1993.

63



[55] Fawcett T. ROC graphs: Notes and practical considerations for researchers. Kluwer

Academic Publishers, 2004.

[56] Morimoto T., Takeuchi T., Miyata H., and Hashimoto Y. Pattern recognition of fruit

shape based on the concept of chaos and neural networks. Computers and Electronics

in Agriculture, pages 171–186, 2000.

[57] Liu Y. and Li Y. Image feature extraction and segmentation using fractal dimension.

In International Conference on Information and Signal Processing, pages 975–979,

Singapur, 1997. IEEE.

64


